
A New Pathway for Vector Databases:
Spectral Indexing using taumode (λτ) with arrowspace

Lorenzo Moriondo

Independent Researcher - tuned.org.uk

ORCID: 0000-0002-8804-2963

14 October 2025

Abstract

arrowspace is a library (and relative data structure ArrowSpace) for vector similarity search

that goes beyond traditional distance metrics by incorporating spectral graph properties to

�nd structural patterns in high-dimensional data. ArrowSpace adds a spectral dimension

that captures structural patterns, enabling more nuanced similarity matching for scienti�c

and structured data applications. arrowspace combines traditional semantic similarity with

graph-based spectral properties. The library introduces taumode (in mathematical expressions

λτ , lambda-tau) indexing, which blends Rayleigh quotient smoothness energy from graph

Laplacians with edgewise dispersion statistics to create bounded, comparable spectral scores.

This enables similarity search that considers both semantic content and spectral characteristics

of high-dimensional vector datasets. Experimental results are presented starting from CVE

dataset.

1 Statement of Need

Traditional vector similarity search relies primarily on geometric measures, like cosine similarity or
Euclidean distance which capture semantic relationships but ignore the spectral structure inherent
in many datasets. For example in domains such as protein analysis, signal processing and molecular
dynamics (but also in any other �eld relying on text embeddings), the "roughness" or "smoothness"
of feature signals across data relationships can provide valuable discriminative information that
complements semantic similarity.

Existing vector databases and similarity search systems lack integrated spectral-aware indexing
capabilities. While spectral methods exist in graph theory and signal processing (for spectral
clustering see [9]), they are typically computationally expensive and they are not considered for
database applications. With the increasing demand for vector searching though (in particular,
at current state, for the components called "retrievers" in RAG applications [6]), the research
on spectral indexing gains traction for database applications. arrowspace addresses this gap by
providing:

1. Spectral-aware similarity search that combines semantic and spectral properties

2. Bounded synthetic indexing that produces comparable scores across datasets

3. Memory-e�cient representation that avoids storing graph structures at query time

4. High-performance Rust implementation with potentially zero-copy operations and
cache-friendly data layouts

1

2 Data Model and Algorithm

arrowspace provides an API to use taumode (λτ) that is a single, bounded, synthetic score per sig-
nal that blends the Rayleigh smoothness energy on a graph with an edgewise dispersion summary;
enabling spectra-aware search and range �ltering. Operationally, arrowspace stores dense features
(inspired by CSR [8] and smartcore [14]) as rows over item nodes, computes a Laplacian on items,
derives per-row Rayleigh energies, compresses them via a bounded map E/(E + τ), mixes in a
dispersion term and uses the resulting λτ both for similarity and to build a λ-proximity item graph
used across the API. This way the λτ (taumode) score can rely on a synthesis of the characteristics
proper of di�usion models and geometric/topological representation of graphs.

2.1 Motivation

From an engineering perspective, there is increasing demand for vector database indices that can
spot vector similarities beyond the current available methods (L2 distance, cosine distance, or
more complex algorithms like HNSW that requires multiple graphs, or typical caching mechanism
requiring hashing). New methods to search vector spaces can lead to more accurate and �ne-
tunable procedures to adapt the search to the speci�c needs of the domain the embeddings belong
to. Furthermore, the most popular embeddings search algorithms focus on single-vector search that
has been proved to have theoretical limits ([3]); spectral algorithms like ArrowSpace can provide a
base for multi-vector search by allowing to index sub-vectors of embeddings in a fast linear fashion.

2.2 Foundation

The starting score is Rayleigh as described in [5]. Chen emphasises that the Rayleigh quotient
provides a variational characterisation of eigenvalues, it o�ers a way to �nd eigenvalues through
optimisation rather than solving the characteristic polynomial. This perspective is fundamental in
numerical linear algebra and spectral analysis. The treatment is particularly valuable for under-
standing how spectral properties of matrices emerge naturally from optimisation problems, which
connects to applications in data analysis, graph theory, and machine learning.

Basic points:

� De�nition: for a feature row x and item-Laplacian L, the smoothness is E = x⊤Lx
x⊤x

, which is
non-negative, scale-invariant in x, near-zero for constants on connected graphs, and larger
for high-frequency signals; the Rayleigh quotient is the normalised Dirichlet Energy, it is the
discrete Dirichlet energy normalised by signal power.

� Physical Interpretation: Dirichlet energy measure the �potential energy� or �sti�ness� of
a con�guration while the Rayleigh quotient normalises this by the total �mass� or �signal
power�. the result is a scale-invariant measure of how much energy is required per unit mass
(in our case the items-nodes).

� The numerator equals the sum of weighted edge di�erences
∑

(i,j) wij(xi − xj)
2, directly

capturing roughness over the graph, a classical link between Laplacians and Dirichlet energy
used throughout spectral methods.

Some implementation starting points:

� Rayleigh energy x⊤Lx/x⊤x measures how �wiggly� a feature signal is over an item graph;
constants yield near-zero on connected graphs, while alternating patterns are larger, making
it a principled spectral smoothness score for search and structure discovery.

� Pure Rayleigh can collapse near zero or be hard to compare across datasets; mapping energy
to a bounded score and blending with a dispersion statistic produces a stable, comparable
score that preserves spectral meaning while improving robustness for ranking and �ltering.

2

2.2.1 Graph and data model

Rayleigh energy score is complemented for spectral indexing by computing the graph Laplacian
[7] of the dataset:

� Items and features: arrowspace stores a matrix with rows = items and columns = feature
signals; the item graph nodes are the rows, and Rayleigh is evaluated per feature row against
that feature-Laplacian, aligning spectral scores with dataset geometry.

� Item Laplacian: a Laplacian matrix is constructed over the graph using a λ-proximity policy
(ϵ threshold on per-item λ, union-symmetrised, k-capped, kernel-weighted); diagonals store
degrees and o�-diagonals are −weights, satisfying standard Laplacian invariants used by the
Rayleigh quotient.

2.2.2 Role of Laplacian

What the graph Laplacian contributes to Rayleigh energy:

1. Spectral Smoothness: captures how features vary across item relationships

2. Graph Structure: encodes similarity topology beyond simple pairwise distances

3. E�cient Computation: sparse matrix enables fast spectral calculations

4. Theoretical Foundation: connects to harmonic analysis and di�usion processes

5. Open-endedness: on the far speculative side, opens potential integrations for FFT (Fast
Fourier Transform) analysis of feature-major matrices and for quantum computation inte-
gration to leverage taumode paramters sweeping to compute nodes amplitudes.

2.3 taumode and bounded energy

The main idea for this design is to build a score that synthesises the energy features and geometric
features of the dataset and apply it to vector searching.

Rayleigh and Laplacian as bounded energy transformation score become a bounded map: raw
energy E is compressed to E ′ = E

E+τ
∈ [0, 1) using a strictly positive scale τ , stabilising tails and

making scores comparable across rows and datasets while preserving order within moderate ranges.
Additional τ selection: taumode supports Fixed, Mean, Median, and Percentile; non-�nite

inputs are �ltered and a small �oor ensures positivity; the default Median policy provides robust
scaling across heterogeneously distributed energies.

Rayleigh, Laplacian and τ selection enable the taumode score, so to use this score as an indexing
score for dataset indexing.

2.3.1 Purpose of τ in the Bounded Transform

The τ parameter is crucial for the bounded energy transformation: E ′ = E/(E + τ). This maps
raw Rayleigh energies from [0,∞) to [0, 1), making scores:

� Comparable across datasets with di�erent energy scales

� Numerically stable by preventing division issues with very small energies

� Bounded for consistent similarity computations

3

2.3.2 taumode Options and Their Use Cases

1. taumode::Fixed(value)
1 taumode :: Fixed (0.1) // Use exactly $\tau = 0.1$

When to use:

� You have domain knowledge about the appropriate energy scale

� Consistency across multiple datasets is critical

� Reproducibility is paramount (no dependence on data distribution)

Example: If you know protein dynamics typically have Rayleigh energies around 0.05-0.2, you
might �x τ = 0.1.

2. taumode::Median (Default)
1 taumode :: Median // Use median of all computed energies

When to use:

� Robust scaling - less sensitive to outliers than mean

� Heterogeneous energy distributions with potential skewness

� General-purpose applications where you want automatic adaptation

Why it's default: The median provides a stable central tendency that works well across
diverse datasets without being thrown o� by extreme values.

3. taumode::Mean
1 taumode ::Mean // Use arithmetic mean of energies

When to use:

� Normally distributed energy values

� You want the transform to preserve relative distances around the center

� Mathematical simplicity is preferred

Caution: Sensitive to outliers - a few very high-energy features can skew the entire transfor-
mation.

4. taumode::Percentile(p)
1 taumode :: Percentile (0.25) // Use 25th percentile

2 taumode :: Percentile (0.75) // Use 75th percentile

When to use:

� Fine-tuned control over the energy threshold

� Emphasising di�erent regimes:

� Low percentiles (0.1-0.3): Emphasise discrimination among low-energy (smooth) fea-
tures

� High percentiles (0.7-0.9): Emphasise discrimination among high-energy (rough) fea-
tures

4

2.3.3 Practical Impact on Search

The choice of taumode a�ects how the bounded energies E ′ distribute in [0, 1):

1 // Low -energy feature with different τ values

2 let energy = 0.01;

3 let tau_small = 0.001; // $E ' = 0.01/0.011\ approx0 .91$ (high

sensitivity)

4 let tau_large = 0.1; // $E ' = 0.01/0.11\ approx0 .09$ (low sensitivity)

E�ect on Lambda-Aware Similarity In the lambda-aware similarity score: s = α · cosine +
β · (1/(1 + |λq − λi|))

� Smaller τ → More compressed E ′ values → Less discrimination between di�erent energy
levels

� Larger τ → More spread E ′ values → Greater emphasis on spectral di�erences

2.3.4 Implementation Robustness

The code includes several safeguards. About the τ scale, it is limited to a �oor. This has proved
useful to �nd similarity in vectors at a range interval scale of 10−7:

1 pub const TAU_FLOOR: f64 = 1e-9;

All the tests for �niteness and boundedness of taumode are present in the tests in the repository.

Recommendation Strategy

1. Start with taumode::Median (default) - works well generally

2. Use taumode::Fixed when you need reproducibility across runs/datasets

3. Try taumode::Percentile(0.25) if you want to emphasise smooth features

4. Try taumode::Percentile(0.75) if rough/high-frequency features are most important

5. Avoid taumode::Mean unless you're con�dent about normal distribution

The choice fundamentally determines how much the spectral component (λ) in�uences
similarity relative to semantic cosine similarity, making it a key hyperparameter for tuning search
behavior in your speci�c domain.

3 Summary and Conclusion

3.1 taumode (λτ) Indexing

The core innovation of arrowspace is the λτ synthetic index, which combines:

� Rayleigh Energy: For each feature signal x over an item graph with Laplacian L, computes
the smoothness energy E = (xTLx)/(xTx)

� Bounded Transform: Maps raw energy E to E ′ = E/(E + τ) using a robust τ selection
policy (Median, Mean, Percentile, or Fixed)

� Dispersion Term: Captures edge-wise concentration of spectral energy using Gini-like
statistics

5

� Synthetic Score: Blends E ′ and dispersion via λ = α ·E ′+(1−α) ·G, producing bounded
scores

Here the references to these concepts in the code:

3.1.1 Rayleigh Energy Implementation

The Rayleigh energy computation E = (xTLx)/(xTx) is implemented in src/operators.rs:

1 /// Rayleigh quotient x^T L x / x^T x for Laplacian L (CSR).

2 pub fn rayleigh_lambda(gl: &GraphLaplacian , x: &[f64]) -> f64 {

3 assert !(!x.is_empty (), "vector cannot be empty");

4 let den: f64 = x.iter().map(|&xi| xi * xi).sum();

5 if den <= 0.0 {

6 return 0.0;

7 }

8 let mut num = 0.0;

9 for i in 0..gl.nnodes {

10 let xi = x[i];

11 let start = gl.rows[i];

12 let end = gl.rows[i + 1];

13 let s: f64 = (start..end).map(|idx| gl.vals[idx] *

x[gl.cols[idx]]).sum();

14 num += xi * s;

15 }

16 num / den

17 }

3.1.2 Bounded Transform Implementation

The bounded transform E ′ = E/(E + τ) is implemented in src/taumode.rs:

1 // Select tau over the per -item energies and map to bounded scores

2 let tau = select_tau (& e_item_raw , tau_mode);

3 let mut synthetic_items = Vec:: with_capacity(n_items);

4 for i in 0.. n_items {

5 let e_bounded = {

6 let e = e_item_raw[i].max (0.0);

7 e / (e + tau) // <-- Bounded transform here

8 };

9 let g_clamped = g_item_raw[i].clamp (0.0, 1.0);

10 let s = alpha * e_bounded + (1.0 - alpha) * g_clamped;

11 synthetic_items.push(s);

12 }

3.1.3 Dispersion Term Implementation

The Gini-like dispersion statistic is computed in src/taumode.rs:

1 // G_f: sum of squared normalised edge shares

2 let mut g_sq_sum = 0.0;

3 if edge_energy_sum > 0.0 {

4 for i in 0.. n_items {

5 let xi = x[i];

6 let (s, e) = (gl.rows[i], gl.rows[i + 1]);

7 for idx in s..e {

8 let j = gl.cols[idx];

9 if j == i {

10 continue;

6

11 }

12 let w = (-gl.vals[idx]).max (0.0);

13 if w > 0.0 {

14 let d = xi - x[j];

15 let contrib = w * d * d;

16 let share = contrib / edge_energy_sum; // Edge energy share

17 g_sq_sum += share * share; // Gini -like concentration

18 }

19 }

20 }

21 }

22 let g_f = g_sq_sum.clamp (0.0, 1.0);

23 dispersions_f.push(g_f);

3.1.4 Synthetic Score Blending

The �nal synthetic score λ = α · E ′ + (1− α) ·G is computed in src/taumode.rs:

1 let s = alpha * e_bounded + (1.0 - alpha) * g_clamped;

2 synthetic_items.push(s);

3.2 Graph Construction

arrowspace builds similarity graphs from vector data using lambda-proximity connections:

� Item Graphs: Connects items whose aggregated λ values di�er by at most ϵ

� K-Capping: Limits neighbors per node while maintaining graph connectivity

� Union Symmetrisation: Ensures undirected Laplacian properties

� Kernel Weighting: Uses monotone kernels w = 1/(1 + (|∆λ|/σ)p) for edge weights

3.3 Memory-E�cient Design

The library consider by-design several optimisations for performance:

� Column-Major Storage: Dense arrays with items as rows, transposed to items as columns
for Laplacian computation ([14] will be used)

� Potentially Zero-Copy Operations: Slice-based access without unnecessary allocations
as already present in [14]

� Single-Pass Computation: λτ indices computed once, graph is reused to compute λτ of
query vectors

� Cache-Friendly Layout: Contiguous memory access patterns for potential SIMD opti-
mization and sparse matrix storage (CSR) for the Laplacians(s)

4 Implementation

arrowspace is implemented in Rust (edition 2024, [?]) with the following architecture:

7

4.1 Core Components

� ArrowSpace: Dense matrix container with per-item λτ scores. Sparse matrices for the Lapla-
cian and the optional "spectral laplacian"

� ArrowItem: Individual vector with its lambda index and similarity operations

� GraphLaplacian: Holds the graph matrix used for the Rayleigh-based computation

� ArrowSpaceBuilder: Fluent API for con�guration and construction

4.2 Usage Example

1 use ArrowSpace :: builder :: ArrowSpaceBuilder;

2 use ArrowSpace ::core:: ArrowItem;

3

4 // Build ArrowSpace from item vectors

5 let items = vec![

6 vec![1.0 , 2.0, 3.0], // Item 1

7 vec![2.0 , 3.0, 1.0], // Item 2

8 vec![3.0 , 1.0, 2.0], // Item 3

9];

10

11 let (aspace , _graph) = ArrowSpaceBuilder ::new()

12 .with_lambda_graph (0.5, 6, 2.0, None)

13 .build(items);

14

15 // Query with lambda -aware similarity

16 let query = ArrowItem ::new(vec![1.5, 2.5, 2.0], 0.0);

17 let results = aspace.search_lambda_aware (&query , 5, 0.8, 0.2);

5 Performance Characteristics

5.1 Computational Complexity

� Index Construction: O(n2) for similarity graph (already identi�ed a solution to make this
into O(n×k×d log n)); O(d ·nnz(l)) for λτ computation; where respectively n is the number
of items, k is the number of top-k pairs used for the adjacency matrix computation, d is the
number of features for each item (dimensions) and l is the number of items in which the
Laplacian is computed

� Query Time: O(n) for linear scan, O(1) for λτ lookup

� Memory Usage: O(d · n) for dense storage, O(n) for λτ indices

5.2 Benchmarks

The library includes benchmarks comparing ArrowSpace with baseline cosine similarity, these are
partial but help for framing the problem of index-building:

� Single Query: ∼15% overhead for λτ -aware search vs pure cosine

� Batch Queries: Scales linearly with batch size, maintains constant per-query overhead

� Memory Footprint: 4-8 bytes per λτ index vs graph storage

8

6 Scienti�c Applications and Results

arrowspace has been designed with several scienti�c domains in mind:

6.1 Protein Structure Analysis

The examples demonstrate protein-like vector databases with molecular dynamics features (in-
spired by [15]):

1 // Trajectory features for spectral analysis

2 fn trajectory_features(domain: &ProteinDomain) -> Vec <f64 > {

3 let mut features = Vec::new();

4 for frame in &domain.trajectory {

5 features.push(frame.rmsd);

6 features.push(frame.energy / 1000.0);

7 features.push(frame.temperature / 300.0);

8 // ... additional biophysical features

9 }

10 features

11 }

12

13 let items: Vec <Vec <f64 >> = domains

14 .into_iter ()

15 .map(extract_features)

16 .collect ();

17

18 let (aspace , _gl) = ArrowSpaceBuilder ::new()

19 .build(items); // $N\timesF -> auto -transposed to F\timesN$

6.2 Theoretical properties and tests

� Invariants: tests enforce non-negativity and non-zero of Rayleigh, near-zero for constant
vectors on connected graphs, scale-invariance λ(cx) = λ(x), and conservative upper bounds
via diagonal degrees, aligning with standard spectral graph theory expectations [5].

� Laplacian structure: CSR symmetry, negative o�-diagonals, non-negative diagonals, de-
gree�diagonal equality, and deterministic ordering are validated to ensure stable Rayleigh
evaluation and reproducible λτ synthesis across builds [4].

6.3 Practical guidance

� Defaults: a practical starting point is ϵ ≈ 10−3, k ∈ [3, 10], p = 2.0, σ = ϵ, and taumode::Median
with α ≈ 0.7; this keeps the λ-graph connected but sparse and yields bounded λτ values
that mix energy and dispersion robustly for search [16, 10].

� Usage patterns: build ArrowSpace from item rows (auto-transposed internally), let the
builder construct the λ-graph and compute synthetic λτ , then use lambda-aware similar-
ity for ranking or ϵ-band ordered sets for range-by-score retrieval; in-place algebra over items
supports superposition experiments while preserving spectral semantics through recompute
[5, 2, 4].

6.4 Experimental Results

arrowspace has substantial potential for raw improvements plus all the advantages provided to
downstream more complex operations like matching, comparison and ranking due to the λ spec-
trum. The time complexity for a range-based lookup is the same as a sorted set O(log(N) +M).

9

As demonstrated in the 02_proteins_lookup example, starting from a collection of λs with a
standard deviation of 0.06, it is possible to sort out the single nearest neighbour with a range
query on an query interval of λ± 10−7.

At current implementation (October 2025: v0.15.0) index building has been improved to be in
the constraint of O(n × k × d × log n) where n is the number of items, k is the number of top-k
results retrieved for the building of the adjacency matrix and k is the number of features of the
dataset.

Simulations have been run on real-world datasets and the results con�rm the implementation
by index design, to provide better tail/head ratio results with convenience of performance. Full
results are described in [19]. In this experiment on the full Common Vulnerabilities and Exposures
(CVE) dataset ([18]), the index-building, searching and ranking capabilities have been successfully
demonstrated. Brief summary of characteristics of the test, full results, full code used for running
the experiment and for the metrics design, diagrams in PNG format available at [20]:

� initial dataset ∼ 310, 000 items with 384 features features

� time to build the taumode index: ∼ 2000 seconds

� average retrieval results comparable with cosine similarity

� head/tail ratio metric demonstrates considerable improvements in the capability of retrieving
tail results that have improved measurable �tness with the query

These results signal potential improvements in the way the industry retrieves documents from vec-
tor databases and provides them for in-context learning to LLM systems. In scenarios where LLM
systems rely increasingly in in-context learning ([17]) this can bring non-negligible improvements
in the quality of data that is passed to RAG processes in all its current applications. This directly
transmits to the overall quality of the context to which the LLM has access. As taumode embeds
the connectivity characteristics of the graph built on the relations among features, the quality of
these relations is mirrored in the search process so to provide increasingly �t results for downstream
context engineering.

Here a summary table, the Avg NDCG@10 metric and the Avg Tail/Head ratio are de�ned in
the code for the experiment with links available at [19]:

Table 1: CVE Search Analysis Results
Aspect Value Notes
Corpus window 1999�2025 Year-range parameters in the loader
Items × Features 310,841 × 384 Embedding shape after encoding
Build time ∼2225 s ArrowSpaceBuilder timing on 12 cores CPU
Avg NDCG@10 (Hybrid vs Cosine) 0.9988 Mean across 3 queries
Avg NDCG@10 (taumode vs Cosine) 0.9886 Mean across 3 queries
Avg Tail/Head ratio (Cosine) 0.9114 ± 0.0463 Higher is better tail quality
Avg Tail/Head ratio (Hybrid) 0.9394 ± 0.0340 Consistent uplift over cosine
Avg Tail/Head ratio (taumode) 0.9593 ± 0.0259 Best long-tail stability in this run

7 Conclusion

arrowspace library (data structure ArrowSpace) provides a novel approach to vector similarity
search by integrating spectral graph properties with traditional semantic similarity measures. The
λτ indexing system o�ers a memory-e�cient way to capture spectral characteristics of vector
datasets while maintaining practical index building and query performance. The library's design

10

emphasises both mathematical consistency and computational e�ciency, making it suitable for
scienti�c applications requiring spectral-aware similarity search.

The combination of Rust's performance characteristics with innovative spectral indexing al-
gorithms positions ArrowSpace as a valuable tool for researchers and practitioners working with
high-dimensional vector data where both semantic content and structural properties matter.

Lambda-aware similarity: for query and item ArrowItems, the score combines semantic cosine
and λ proximity via s = α cos(q, i) + β(1/(1 + |λq − λi|)), making search sensitive to both content
and spectral smoothness class; setting α = 1, β = 0 recovers plain cosine.

Range and top-k: ArrowSpace exposes lambda-aware top-k, radius queries, and pairwise cosine
matrices; examples validate that λ-aware rankings agree with cosine when β = 0 and diverge
meaningfully when blending in λ proximity, with tests covering Jaccard overlap and commutativity
of algebraic operations.

The de�nition of a core library to be used to develop a database solution based on spectral
indexing is left to another paper that will include further improvements in terms of algorithms
and idioms to make this approach to indexing feasible and e�cient in modern cloud installations.
Current codebase (October 2025: v0.15.0) is available at [1].

8 Acknowledgments

The author is an independent researcher who self-funded this work. All works available at his
research page.

11

https://www.tuned.org.uk
https://www.tuned.org.uk

References

[1] Lorenzo Moriondo, Rust codebase for arrowspace, 2025. https://github.com/Mec-iS/

arrowspace-rs DOI: 10.21105/joss.09002

[2] Sridhar Mahadevan, CMPSCI 791BB: Advanced ML - Spectral Graph Theory. Univer-
sity of Massachusetts, Amherst, 2006. https://people.cs.umass.edu/~mahadeva/cs791bb/
lectures-s2006/lec4.pdf

[3] Orion Weller, Michael Boratko, Iftekhar Naim, and Jinhyuk Lee, "On the Theoretical Limita-
tions of Embedding-Based Retrieval", arXiv preprint https://arxiv.org/abs/2508.21038

[4] Peter Grindrod, Laplacians of Complex Networks. University of Bristol. https://people.
maths.bris.ac.uk/~maajg/teaching/complexnets/laplacians.pdf

[5] Guangliang Chen, Math 253: Rayleigh Quotient Lecture Notes. San Jose State
University, 2020. https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/

lec4RayleighQuotient.pdf

[6] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela, Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv
preprint arXiv:2005.11401, 2020. Accepted at NeurIPS 2020.

[7] Daniel A. Spielman, Spectral Graph Theory - Lecture 7. Yale University, 2007. https://www.
cs.yale.edu/homes/spielman/462/2007/lect7-07.pdf

[8] Terence Kelly, Compressed Sparse Row Format for Representing Graphs. ;login: The Magazine
of USENIX & The Advanced Computing Systems Association, 45(4):76�83, 2020. Program-
ming Workbench Column.

[9] Ulrike von Luxburg, A tutorial on spectral clustering. Statistics and Computing, 17:395�416,
2007.

[10] Dexter Chua, Heat Kernel and Spectral Dimension. 2025. https://dec41.user.srcf.net/
exp/heat_kernel/heat_kernel.pdf

[11] Xiao Bai, Heat Kernel Analysis On Graphs. PhD thesis, University of York, 2007.

[12] Xiao Bai and Edwin R. Hancock, Heat Kernels, Manifolds and Graph Embedding. Pattern
Recognition, University of California, Davis, 2010.

[13] Rust Team, "The Rust Programming Language", Edition 2024. https://www.rust-lang.
org/

[14] Vlad Orlov, Smartcore: A numerical library in pure Rust. 2019. https://github.com/

smartcorelib/smartcore

[15] Philip Nelson, Physical Models of Living Systems. University of Pennsylvania, 2015. https:
//www.physics.upenn.edu/biophys/PMLS/

[16] Dirichlet energy. Wikipedia, 2024. https://en.wikipedia.org/wiki/Dirichlet_energy

[17] Qizheng Zhang and Changran Hu and Shubhangi Upasani and Boyuan Ma and Fenglu Hong
and Vamsidhar Kamanuru and Jay Rainton and Chen Wu and Mengmeng Ji and Hanchen Li
and Urmish Thakker and James Zou and Kunle Olukotun Agentic Context Engineering: Evolv-
ing Contexts for Self-Improving Language Models https://arxiv.org/abs/2510.04618v1

12

https://github.com/Mec-iS/arrowspace-rs
https://github.com/Mec-iS/arrowspace-rs
https://people.cs.umass.edu/~mahadeva/cs791bb/lectures-s2006/lec4.pdf
https://people.cs.umass.edu/~mahadeva/cs791bb/lectures-s2006/lec4.pdf
https://arxiv.org/abs/2508.21038
https://people.maths.bris.ac.uk/~maajg/teaching/complexnets/laplacians.pdf
https://people.maths.bris.ac.uk/~maajg/teaching/complexnets/laplacians.pdf
https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec4RayleighQuotient.pdf
https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec4RayleighQuotient.pdf
https://www.cs.yale.edu/homes/spielman/462/2007/lect7-07.pdf
https://www.cs.yale.edu/homes/spielman/462/2007/lect7-07.pdf
https://dec41.user.srcf.net/exp/heat_kernel/heat_kernel.pdf
https://dec41.user.srcf.net/exp/heat_kernel/heat_kernel.pdf
https://www.rust-lang.org/
https://www.rust-lang.org/
https://github.com/smartcorelib/smartcore
https://github.com/smartcorelib/smartcore
https://www.physics.upenn.edu/biophys/PMLS/
https://www.physics.upenn.edu/biophys/PMLS/
https://en.wikipedia.org/wiki/Dirichlet_energy
https://arxiv.org/abs/2510.04618v1

[18] The MITRE Corporation and CVE Program, "CVE List V5: Common Vulnerabilities and Ex-
posures Database (1999�2025)"", CVE JSON 5.0 Format https://www.cve.org/downloads
and https://github.com/CVEProject/cvelistV5, Accessed: September 29, 2025.

[19] (article) Lorenzo Moriondo, taumode: Beyond Cosine Similarity on
the CVE Dataset. https://github.com/Mec-iS/staticwebpage/blob/

101215e63173d513c734e3b26166233a5f4a5f43/posts/004_beyond_cosine_similarity.

md

[20] (code) Lorenzo Moriondo taumode on the CVE dataset experiment re-
sults diagrams https://github.com/tuned-org-uk/pyarrowspace/tree/

ca624a919c05bf66a676dc85dfbafa6efc1253d2/tests/output/1760238942_v0_15

13

https://www.cve.org/downloads
https://github.com/CVEProject/cvelistV5
https://github.com/Mec-iS/staticwebpage/blob/101215e63173d513c734e3b26166233a5f4a5f43/posts/004_beyond_cosine_similarity.md
https://github.com/Mec-iS/staticwebpage/blob/101215e63173d513c734e3b26166233a5f4a5f43/posts/004_beyond_cosine_similarity.md
https://github.com/Mec-iS/staticwebpage/blob/101215e63173d513c734e3b26166233a5f4a5f43/posts/004_beyond_cosine_similarity.md
https://github.com/tuned-org-uk/pyarrowspace/tree/ca624a919c05bf66a676dc85dfbafa6efc1253d2/tests/output/1760238942_v0_15
https://github.com/tuned-org-uk/pyarrowspace/tree/ca624a919c05bf66a676dc85dfbafa6efc1253d2/tests/output/1760238942_v0_15

	Statement of Need
	Data Model and Algorithm
	Motivation
	Foundation
	Graph and data model
	Role of Laplacian

	taumode and bounded energy
	Purpose of in the Bounded Transform
	taumode Options and Their Use Cases
	Practical Impact on Search
	Implementation Robustness

	Summary and Conclusion
	taumode () Indexing
	Rayleigh Energy Implementation
	Bounded Transform Implementation
	Dispersion Term Implementation
	Synthetic Score Blending

	Graph Construction
	Memory-Efficient Design

	Implementation
	Core Components
	Usage Example

	Performance Characteristics
	Computational Complexity
	Benchmarks

	Scientific Applications and Results
	Protein Structure Analysis
	Theoretical properties and tests
	Practical guidance
	Experimental Results

	Conclusion
	Acknowledgments

