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Abstract

Starting from previous research on topological spaces for vector search (spectral search
with taumode), I introduce in this paper the definition, concept implementation and testing
of a new class of Transformers focused on boosting the attention mechanism. The Topological
Transformer, or Tauformer, applies all the features from current attention-based transform-
ers (taking as baseline nanoGPT) and redesigns the attention mechanism at its core to: (i)
allow delivering domain-specific context at the level of the attention mechanism for more
domain-relevant token generation, (i) improve time per token by ~ 20% and provide savings
in KV-cache memory size by ~ 50% and (%) set a potential pathway to improve Transform-
ers performance on larger context windows with longer prompt lengths and high-dimensional
embeddings; this is made possible by substituting inner-product with taumode’s synthetic
index-based distance, aiming to provide relevant linear gains in training and generation com-
pared to current GPTs.

1 Introduction

Concepts and tools developed in my previous publication ArrowSpace: introducing Spectral In-
dexing for vector search [1] have been here reused to redesign the attention mechanism forking
the nanoGPT [2] implementation for the Transformer architecture [3]; in particular taumode, a
synthetic index based on the Rayleigh quotient [4] to compute the distribution of energy in the net-
work defined by the embeddings space. Examples about how to compute the taumode distribution
for any space of embeddings is available in the pyarrowspace repository.

Tauformer makes possible downstream technical improvements in computing and memory
usage for the Transformer (GPT) and they are detailed in the following sections. These improve-
ments are a consequence of pursuing the concept of providing a memory layer to LLMs that
brought forward the idea of leveraging distilled knowledge graphs (dkb) to deliver domain
information to the attention mechanism at token generation level. For dkb is intended
here for example: (i) Text embeddings generated by feeding to an embedding model (in the tested
example: TSDAE [5]) a representative corpus of the domain to map, this provides a vector space
with manageable number of dimensions (384 in the example) that is a prerequisite to build the
context windows at the attention level; (i) Graph embeddings of triples generated using techniques
like the SEPAL workflow demonstrated in |6, again the result is a vector space with a manageable
dimensionality.

A coherent dkb is generated starting from the vector space defined by its embeddings (and its
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Graph Laplacian computed using arrowspace [1]), this is considered from the point of view of the
LLM system as a persistent memory that is founded on real-world-defined relations. Assuming a
well-designed embedding pipeline, text embeddings from a curated text corpus or a curated Knowl-
edge Base turned into graph embeddings become the numerical ground truths for the topology of
the context, that is eventually delivered to the attention mechanism. Theoretically the Tauformer
can also work, as any other transformer, on images and audio vectors or a mix of them but one
of the critical points focuses on the process of producing the embeddings, how the vector space is
designed and how its dimensionality fits in the attention mechanism.

The choices for: embeddings, attention mechanism and seeding the latent space are taken as de-
sign constraints for the data pipeline from the corpus to the latent space of the model. What is
meant with seeding the latent space? Once the attention mechanism is working with taumode syn-
thetic scores the content of the dkb percolates in the context windows through the usual @, K,V
iterations. Each distance measurements computed for ), K,V is considered in the optics of the
corpus/dataset from which the original embeddings were generated, delivering domain-specific
metadata directly in the attention mechanism and through that to the latent space.

2 Statement of Need

This research is motivated by encoding at generation time an explicit (controllable and inter-
pretable) domain structure beyond what the model can implicitly absorb into weights during
training. Tauformer keeps the familiar ), K,V and causal softmax pipeline but replaces the dot-
product kernel with a distance metrics based on domain-specific manifold: each token/head is
mapped to a topological signal and built into a scalar (taumode score) derived from the Graph
Laplacian (manifold); this way attention is driven by distances in that manifold-aware scalar space
rather than raw geometrical vector similarity. The hypothesis is that this process makes the
model more scoped to the context in the training phase (forward) and in the generating phase
(decoding), because weights and attention scores can be biased toward tokens that are similar
under the learned domain manifold (i.e. a knowledge graph, citation graph, text embedding or
any dataset originally passed to the embedding model). By hypothesis, this has the potential of
improving contextual faithfulness relative to purely dot-product-based retrieval inside the context
window. Not having permanent reference about the context is especially consequential in scientific
and knowledge-intensive settings, where the desired notion of "relevance" is frequently defined
less by raw generic geometrical proximity and more by the topology of domain relations and how
information (in arrowspace, energy) propagates over them.

Tauformer is also motivated by the practical difficulty of scaling traditional GPTs to very long
contexts and large embeddings, in particular at inference time: full-sequence self-attention has
O(T?) compute in both the dot-product logits and the value aggregation, and decode-time still
grows O(T) per token while KV-cache memory grows linearly with 7. Tauformer’s cache design
reduces KV memory by storing values plus a compact key-side scalar (k;, \;) instead of full K and
V tensors, yielding roughly a halving of KV-cache memory per layer (up to a small overhead for the
scalar stream). With a sparse Laplacian from a domain manifold, the extra cost of computing the
taumode scalars can shift from O(D?) to a sparsity-dependent cost O(nnz(L)) (non-zero elements
of the Laplacian matrix), making the incremental overhead largely independent of sequence length
and therefore more attractive as context windows and embeddings dimensions grow.

Tauformer addresses this by redesigning attention around a synthetic, topology-aware index
computed over the Graph Laplacian of the domain’s embedding space. Beside accuracy and con-
trollability, this substitution is also motivated by systems constraints: the approach reduces de-
pendence on storing key /value histories (full vectors) for long contexts and enables more memory-
efficient inference, opening space for higher-dimensional embeddings and richer internal represen-
tations under fixed hardware budgets. The Graph Laplacian (gl) is usually a DxD matrix where



D is the number of dimensions that for the test dataset are defined by current SOTA embeddings
models to 384. So basically a constant 384x384 sparse matrix (nnz ~ 10* for a realistic sparsity of
1-8%) allows limiting the computing cost for the iteration of @), K, V in the attention mechanism.
The Graph Laplacian can be seen as a distillation of the domain knowledge and its generation
takes a cheap pre-training step that for the test dataset is ~ 300 seconds on a common laptop
hardware for a dataset of 3 x 10° vectors on 384 dimensions.

The code for the GPT implementation is available at [7]. The code used to test and collect
benchmark for the KV-cache is available at [8].

3 Memory Model and Algorithm

3.1 Generics

By leveraging the Graph Laplacian matrix (g/) built on the vector space defined by the embeddings
for a given domain, it is possible to define a synthetic score (A7, lambda-tau or taumode) that can
be used to spot approximate nearest neighbours of a given vector (z) as: A7 = taumode(z, gl).
In the Tauformer architecture this distance metrics has been applied to the process of computing
query, keys, value vectors (@, K, V) in the attention mechanism; allowing the substitution of
QTK with —|Ag — Akl. This also enable saving a relevant percentage of the memory space used
by the KV-cache and opens to having larger vectors and attention heads because part of the
computing used by the inner-product operation can be reused to compute on higher dimensional
vectors. These improvements sound already a nice step forward but, from knowledge engineering
perspective, they are side-effects of the main concept brought forward by the implementation
overall: to develop a deliwery system to bring distilled domain knowledge from the vector space
(representing the knowledge graph, graph of citations, or any relations-representative structure)
directly into the attention mechanism. This to test the hypothesis that token generation can be
made more context-relevant if domain-specific metadata is provided at the attention level. If this is
made possible a new class of Transformers that are more or less narrowly scoped for context-specific
generation in a given domain can be developed.

3.2 Tau Attention

In the process of causal attention using the softmaz function, attention is driven by a transcendental
normalisation over dot-product logits, where each new query must form inner-products against all
cached keys (length T) in head dimension D, i.e., the decode-time kernel cost scales as O(B HT D)
for the QK" logits plus another O(B H T D) to aggregate values, with an additional O(B H T)
for masking and the softmax itself. Where the letters are:

e B: Batch size (number of sequences processed in parallel).
e H: Number of attention heads.
e T: Sequence length / number of time steps (tokens) in the context window.

e D: Head dimension (the per-head vector size, typically D = C/H where C is the model
embedding width).

In practice this also forces the KV-cache to store both K and V tensors, i.e., 2- B Hy, T D
floats per layer, because the dot products cannot be reconstructed without the full key vectors. As
context length grows, this "match against all previous keys and renormalise" pattern dominates
both compute and memory, since every step repeats the same D-dimensional comparisons against
an ever-growing set of cached vectors. Obviously this can be become a problem for high D.



Tauformer’s taumode mechanism replaces the dot-product kernel with a scalar spectral sig-
nature per head vector: for each query/key z € RP, it computes a bounded Rayleigh quotient
energy ' Lz/(z"z) (optionally blended with an item/edge dispersion statistic), producing a sin-
gle \-like score per token per head. Attention logits are then built by comparing the query’s A, to
previously stored )\, values for cached keys:

Q5 = _|>\q,i — )\M]/temp

after which the causal mask and V-weighted sum are reused unchanged. This changes what must
be cached: tauformer stores V' and the scalar )\, history rather than full K, reducing cache
size from 2B Hy, T D floats to B Hy, T D + B Hy,, T floats (about ~ 50% savings for typical D).
Computing shifts accordingly, instead of spending O(B H T D) on dot-products at each decode
step, Tauformer pays O(B H nnz(L)) to compute the query’s Rayleigh term with a sparse Laplacian
and only O(B HT) to compare scalars against cached )\, making the scoring step dimension-
light while keeping value aggregation O(B H T D) the same (equivalence of outcome compared to
nanoGPT are available in the implementation’s unit tests).

The key improvement is that the Graph Laplacian is designed to be a sparse matrix, so opti-
mising the code for a sparse representation the O(D) terms become O(nnz) with nnz being the
number of non-zero elements in the matrix.

Further computing advantages are discussed in 4.

3.3 Built-in Memory

Beside the additional potential computing advantages that are analysed below, the Tauformer
and relative tauGPT concept allow the kind of persistent memory described in 3.1; delivering a
persistent (long-term, unchanging in this initial design) memory within the attention
mechanism. This follows current research for supplementing LLMs with memory sub-systems: for
example as seen in [9] where a neural long-term memory module for 2M+ token contexts works in
parallel and provides prefix sub-vectors to the context window; or in [10] that categorises memory
into sensory, short-term and long-term within agentic workflows; or in [11] that uses a "Memory
Bank" to store and retrieve long-form text for in-context learning. In addition, the papers that try
to supplement LLMs with agentic workflows: for example [12] that evaluates "Agentic Memory"
across multi-hop and temporal reasoning tasks. Some of these capabilities can be delivered at
a lower-level in the LLM stack. For the purpose of this paper I consider the running attention
mechanism the "momentary memory" and the Graph Laplacian against which the distance scores
are computed "persistent memory" or Domain-Memory, e.g. a kind of information that is constant
to the context as it incorporates some invariants of the frame of reference that is the context in
which the generative model generates tokens. This aligns with the scope of my current research
for building an "AI Memory Layer" based on topological vector search [13|. Tauformer is the first
Transformer to natively incorporate some kind of memory capabilities for graph-based data via
self-attention. Previous research deals with memory of previous states of the momentary memory
like [14] and [15] but not with providing meaningful contextual memory in self-attention.

Tauformer/tauGPT is the only, at my current knowledge, Transformer architecture that deliv-
ers domain knowledge directly in the attention mechanism providing the self-attention itself with
some kind of starting context via the knowledge base metadata compressed in gl; leveraging the
compression made possible by the arrowspace library and the taumode synthetic index. While
technical and conceptual advantages are brought forward by this paper, further research is neces-
sary to ascertain the improved accuracy in the training and token generation on very large context
windows and the improved capability in avoiding generation problems sooner than at reasoning
time.



3.4 Code

The first version of Tauformer/tauGPT |7] has been implemented using the Rust programming
language [16] and the Burn Deep-Learning framework [17] as they provide fast, structured and
type-safe development cycles with mature production ecosystem. Being a concept architecture
this code is obviously not meant for production use at the publication of this paper.

No inner-product tauGPT’s most peculiar change is that it swaps dot-product attention for
lambda-distance attention, where each token/head vector is compressed into a single scalar A de-
rived from a Laplacian energy, so that attention logits become —|AM|/T. The core of compression
is in lambdas_from_heads(...), which flattens [B, H, T, D] into [N, D], computes zL via a mat-
mul, then forms Fi., = (z"Lx)/(z"z + €) and bounds it as e,aw/(e,aw + tau). The scalar X is
then broadcast into a full attention matrix using taumode_distance_logits(...), which literally
builds logits as —((lg — lk).abs()/temp) after reshaping into [B, H,Tq, 1] and [B, H, 1, Tk].

// taumode.rs

2 pub fn lambdas_from_heads<B: Backend>(

x: Tensor<B, 4>,

lap: Param<Tensor<B, 2>>,

cfg: &TauModeConfig,

) -> Temnsor<B, 3> {

let [b, h, t, d] = x.dims();

// Flatten [B,H,T,D] -> [N,D]

10 let n = b * h * t;
11 let x_nd = x.reshape([n, d]);
, // y =a L -> [N,D]
let y_nd = x_nd.clone().matmul (lap.val());

// numerator = sum_i z_1 * (zLl)_<
let numerator = (x_nd.clone() * y_nd).sum_dim(1); // [V]

// denominator = sum_i xz_1°2 + eps
let denom = x_nd.powf_scalar(2.0).sum_dim(1) + cfg.eps; // [V]

[ R S S )

let e_raw = numerator / denom; // [IN]
let e_bounded = e_raw.clone() / (e_raw + cfg.tau); // [V]

9 9
I

e_bounded.reshape ([b, h, t])
}

28 pub fn taumode_distance_logits<B: Backend>(
lambda_q: Tensor<B, 3>,
3 lambda_k: Tensor<B, 3>,
31 cfg: &TaulModeConfig,
32 ) -> Tensor<B, 4> {
let 1g = lambda_q.unsqueeze_dim::<4>(3); // [B,H,Tq,1]
let 1k = lambda_k.unsqueeze_dim::<4>(2); // [B,H,1,Tk]
let temp = cfg.temperature.max(cfg.eps);
-((1g - 1k).abs() / temp)

Sparse Laplacian The other distinctive design choice is that TauModeAttention is built to
operate with either a dense test Laplacian or, as intended by design, a sparse Laplacian loaded
from a manifold (a .parquet file with the computed Laplacian). The code explicitly switches
between those representations at runtime. In TauModeAttention, you can see the dual storage for



the sparse matrix and the dense tensor. All tests are run using the sparse matrix from a pre-trained

arrowspace (manifold file and embeddings for the test queries available in [8]).

1 // tauattention.rs (struct fields + sparse/dense selection)

2 pub struct TauModeAttention<B: Backend> {

3 T

laplacian_tensor: Option<Param<Tensor<B, 2>>>, // using dense

5 laplacian_matrix: Ignored<Option<CsMat<f64>>>, // using sparse
pub(crate) tau_mode: Ignored<Option<TauMode>>,

7 //

8 }

10 fn lambdas_from_heads_any (&self, heads: Tensor<B, 4>) -> Tensor<B, 3>
11 let tau_cfg = self.get_tau_config();

12 if let Some(lap) = self.laplacian_matrix.0.as_ref () A

13 let mode =

self.tau_mode.0.unwrap_or (crate::pretraining::parquet::TauMode
14 crate::taumode::lambdas_from_heads_sparse::<B>(heads, lap, mode,
tau_cfg.eps)

15 } else {

16 let lap = self.get_laplacian_tensor ().clone();

17 crate::taumode:: lambdas_from_heads::<B>(heads, lap, &tau_cfg)
18 }

1 }

{

::Median) ;

KV-caching layout KV-cache in tauGPT is also different compared to standard GPT: instead
of caching K and V', each layer caches (V,lambday) only, which matches the fact that scoring uses
lambda scalars rather than key vectors. The cache type is defined as pub type TauCacheLayer<B>
= Option<(Tensor<B, 4>, Tensor<B, 3>)>; and tauGPT wraps a vector of these per layer in

TauKVCache store: Vec<TauCacheLayer<Bpy, position: usize .

1 // tauattention.rs (KV-cache payload + append logic)
2 pub type TauCachelayer <B> = Option<(Tensor<B, 4>, Tensor<B, 3>)>;

let lambda_k_new = self.lambdas_from_heads_any(k_new); // [B, Hkv, 1]

6 // Cache management
7 let (v_full, lambda_k_full) = match cache_layer.take() {

8 Some ((v_all, 1lk_all)) => (

Tensor::cat(vec![v_all, v_new.clone()], 2), // time azis
10 Tensor::cat(vec![lk_all, lambda_k_new.clone()], 2), // time azis
11 ) o
12 None => (v_new.clone(), lambda_k_new.clone()),
13 };

15 x*cache_layer = Some ((v_full.clone(), lambda_k_full.clone()));
16 let tk = v_full.dims () [2];
17 let y = self.scaled_tau_attention_decode(q, lambda_k_full, v_full, 1,

tk) ;

Inside TauModeAttention: :forward_decode(...), the cache logic appends along the time axis
and then runs attention against the full cached history via scaled_tau_attention_decode(q,

lambda_k_full, v_full, 1, tk).

1 // taugpt.rs (model-level decode uses cache.postition for RoPE step
slicing)

pub fn forward_decode(

&self,

last_ids: Tensor<B, 2, Int>, // [B,1]

5 cache: &mut TauKVCache<B>,
use_softcap: bool,

0N



) -> Temsor<B, 3> {
8 let tpos = cache.position;
let d2 = self.cos.dims () [3];

11 // Slice RoPE for the current absolute position: [1,1,1,D/2]
12 let cos_step = self.cos.clone().slice([0..1, tpos..tpos + 1, 0..1,
0..d21);
let sin_step = self.sin.clone().slice([0..1, tpos..tpos + 1, 0..1,
0..d21);

for (i, block) in self.blocks.iter().enumerate () {

14

15

16 let layer_cache = &mut cache.storel[i];

17 x = block.forward_decode(x, (&cos_step, &sin_step), layer_cache);
18 }

1

20 logits

3.5 Summary of similarities and differences

Both nanoGPT (CausalSelfAttention) and tauGPT (TauModeAttention) use identical V projec-
tion and fetching logic, confirmed by code review and tests.

V projection equivalence Construction - both create the same c_v linear layer with identical
initialization:
cv: LinearConfig::new(n_embd, n_kv_head * head_dim)
.with_bias (false)
.with_initializer (KaimingUniform { gain: 0.5, fan_out_only: false })
Forward path (prefill) - both follow the exact same pipeline for V:
1. Project: self.cv.forward(x).clamp(-5.0, 5.0)
2. Reshape: .reshape([b, t, self.nkvhead, self.headdim])
3. Transpose: v.swap_dims(1, 2) — [B, H_kv, T, D]

4. MQA expand (if n_head != n_kv_head): both use unsqueeze(dim=2) .expand(...) .reshape(. ..
to replicate KV heads

5. Weighted sum: att.matmul(v) after softmax
Decode path (single-step) - identical logic for computing new V and caching:

e Project step: self.cv.forward(x_step).clamp(-5.0, 5.0) .reshape([b, 1, n_kv_head,
head_dim]) .swap_dims (1, 2)

e Append to cache: Tensor::cat(vec![v_all, v_new.clone()], 2) (time dimension)

e MQA expansion and weighted sum identical to forward

What differs The only difference is attention scoring:
e nanoGPT: QK /v/d then softmax
e tauGPT: lambda-distance logits tau_distance_logits(lambda_q, lambda_k) then softmax

After that, both apply the same softmax and the same att.matmul (v) to produce output.

7



Test coverage confirms equivalence Tests verify V is handled identically:

e test_forward_shape_consistency: both produce [B,T,C] outputs (V contributes cor-
rectly)

e test_decode_single_step: both cache V with shape [B, H_kv, T, D]
e test_cache_accumulation: V cache grows identically (time dimension increments)

e test_mqa_expansion: both correctly expand V when n_head != n_kv_head

The difference in final outputs (test_tau_vs_causal_outputs_differ_expected) is purely
due to scoring

4 Results

Multiple tests on both attention mechanisms have been run and results have been collected using
8]

Here some data and diagrams from the tests results. All this data was collected running tests
on CPU hardware because the objective of this concept architecture’s test results are preliminary
and to be taken as a reference and a baseline, to demonstrate that Tauformer/tauGPT can work as
any other Transformer but with delivering of domain-specific (topological) metadata directly in the
attention mechanism and with some performance gains for larger windows and higher dimensional
embeddings.

Considering generated tokens, the results contains 500000 decoded-token latency rows span-
ning both engines ("nano", "tau"), both modes (kv_cache, no_cache), and gen_tokens (context
window) € 128,256,512,1024,2048. Per-token comparisons were computed by matching "nano"
and "tau" tokens on prompt_id, mode, gen_tokens, token_index and then taking the ratio,

The full normalised token-latency results confirms that tauGPT is consistently faster in "kv-
cache" mode (a proxy for inference decoding), and consistently slower in "no cache" (training/un-
cached proxy) for small context windows (up to 2048 tokens); with the gap widening in tauGPT’s
favour as generation length grows in "kv-cache" while the gap in "no cache" mode gets smaller (see
1). The difference in "no cache" between the two gets smaller as the lengths grow so there is room
to make the hypothesis that at some threshold where context window and embeddings lengths are
large enough tauGPT will be at least as fast as nanoGPT in training while being increasingly faster at
inference time. Also to consider that nanoGPT is a relatively much more mature implementation.
This could confirm that Tauformer could be viable also for training on multimodal data where
multiple modalities are concatenated in the same embedding space while keeps being faster and
more efficient (-50% memory for KV-cache) at inference. The assumption that gains are provided
as the context window and the embeddings dimensions grows is for now supported only by regres-
sions run on 0.5M decoded-token rows across hundreds of runs of testing with different lengths.
In particular an idea about at which threshold tauGPT could reach equivalent performance also
in training is hinted in 1, 2, 3.

See table 1 for summary statistics (repository [8] may contain more up-to-date data in the
report/ directory).

TTFT (Time To First Token) is measured differently depending on the caching mode:

e "no cache" mode: TTFT includes the full forward pass through the entire prompt context,
since there’s no cached state. The timer starts when processing begins and stops when the
first token is generated; end_to_end_ms = ttft_ms + decode_total_ms.



e "kv cache" mode: TTFT measures only the decode step for producing the first new token,
after the cache has already been built from the prompt. The prefill/priming time is tracked
separately in the prefill_ms and prime_ms columns; end_to_end_ms = prefill_ms +
ttft_ms + decode_total_ms.

Table 1: Benchmark Summary Statistics for low dimensional vectors
Throughput (tokens/sec) — Higher is Better

Engine Mode Mean  Min Max
nano kv _cache 3747 13.91 59.96  Speedup: Tau/Nano
nano no_cache 4.55 0.89 9.71 (> 1.0 = Tau faster)
tau kv_cache 49.39 15.04 71.21  Metric Factor
tau no_ cache 3.43 0.81 6.91
— Tokens/sec 1.068 x
TTFT 0.997 x
Per-Token Latency (ms) — Lower is Better p50 latency 1.066 x
Engine Mode Mean  p50 p95 P95 latency 1.104x
Decode time 1.067x
nano kv _cache 36.25  36.26 41.35 Total time 1.098%
nano no_cache 327.58 295.88 550.58 :
tau kv_cache 30.44  30.42 33.13
tau no_ cache 390.04 359.90 636.52

4.1 Inference proxy (kv_ cache) results

On a matched per-token basis, nano/tau speedup medians (p50) increase with gen_tokens: 1.09x
(128), 1.12x (256), 1.17x (512), and 1.22x (1024), meaning tau’s per-token latency advantage
strengthens as sequences get longer. Tail behaviour also improves in tau’s favour as sequences
grow: the p95 of nano/tau per-token speedup rises from 1.35x (128) to 1.52x (1024), suggesting
tau reduces worse-case token stalls relative to nano at longer generations in "kv-cache" mode.
Looking specifically at the last 25% of tokens (75-100% bins), the median-latency ratio nano/tau
reaches 1.33x at gen_tokens=1024, indicating the end of long generations is where tau helps
most under kv_cache.

4.2 Training/uncached proxy (no cache) results

For "no cache", matched per-token speedups are < 1 across all lengths (tau slower): median
nano/tau speedup is 0.75x (128), 0.75x (256), 0.76x (512), and 0.80x (1024). The late-token-bin
summary also stays < 1 for "no cache" (e.g., last-25% median ratio is ~ 0.86 at 1024), but the ratio
moves upward with length, which suggests tauGPT’s relative penalty shrinks at longer sequences
even without caching. In the "no cache" distribution, even the p99 nano/tau speedup stays below
1 (=~ 0.9570.97), meaning tauGPT is slower almost everywhere token-by-token in this mode rather
than losing only in a small tail, the situation improves when the window and embeddings lengths
grow. Considering the results of the regressions for larger lengths (context window, embeddings
dimensions and prompt length > 105) there is still a lot of margin to harvest in training also
considering that this implementation is at concept stage without any optimisation. Results at
2048 are already better promising even if the number of runs is limited at the moment.



4.3 Matched per-token speedup distribution (nano/tau)

This is the test matrix and the relative results:

mode gen tokens matched token pairs speedup p50 speedup p95 speedup p99
kv _cache 128 96,768 1.093 1.346 1.437
kv _cache 256 165,888 1.124 1.395 1.494
kv _cache 512 62,208 1.166 1.443 1.557
kv _cache 1024 359,424 1.223 1.523 1.658
no_cache 128 96,768 0.747 0.889 0.965
no_cache 256 165,888 0.749 0.898 0.968
no_ cache 512 62,208 0.762 0.901 0.954
no_cache 1024 359,424 0.805 0.924 0.965

Table 2: Matched per-token speedup distribution (nano/tau) across cache modes and sequence
lengths (higher numbers mean tau is better).

These diagrams compare the gains as the context window, the prompt length and embeddings
dimensions grow up beyond ~ 107, this is only indicative as for nanoGPT is running on CPU and
tauGPT is unoptimised and a concept model but I think it can provides hints to frame the orders
of magnitude at which Tauformer can become performant also in no_cache mode or in other

scenarios:
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Figure 2: Regressions for tau/nano speedups as the prompt length grows
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Figure 3: Regressions for tau/nano speedups as embeddings’ dimensions grows

5 Conclusion: A Beginning

Potential for larger improvements are tested in larger windows generation tests (256, 512, 1024, ...,
10° tokens) and larger embeddings dimensions. The driving hypothesis is that when caching be-
comes too expensive memory-wise (like for very long windows with high-dimensional embeddings),
tauGPT can provide a better solution both in terms of contextual accuracy and performance. Cur-
rent research is exploring at the order of magnitude of 10* window length (average for LLMs is
6000 to 14000) with values for embeddings dimensions in the same order of magnitude. The idea
is to test to have a prompt length and embeddings length that are of the same order of magnitude
of number of non-zero values of the sparse representation in the pre-trained manifold, so that the
model can adapt to the number of dimensions of the manifold processing an element in a single
query (@). The prompt length should be obviously modifiable at will.

11



The normalised token latencies indicate tau’s current value proposition is "decode-heavy in-
ference on long windows and high dimensions” with promising performance gains both in a "no
cache” and "kv-cache” mode for large scales. If training work is well proxied by no_cache, tauGPT
currently underperforms across essentially the entire per-token distribution on lower scales; so
demonstrating training wins require architectural /implementation optimisations, or for the model
to be tested on very long context windows and very high embeddings dimensions (as showed in
the regression diagrams). The next experiments that would most strengthen Tauformer position
should aim to achieve the same results beyond lengths of 107 for the H D and 7.

Current results demonstrate the promising characteristics of a Topological Transformer archi-
tecture, Tauformer; designed to deliver

e (i) domain-specific metadata at the level of attention computation and

e (ii) make self-attention more convenient at very large "lengths" (sequences, heads, embed-
dings dimensions) leveraging topological search (using arrowspace’s taumode vector com-
pression).

To synthesise in few words, Tauformer leverages taumode as attention score, allowing to avoid usage
of inner-products in the attention computation, potentially making possible very large context
windows and to run attention on higher dimensional (multimodal) embeddings with accessible
costs and infrastructural requirements on multi nodes hardware.

In the current implementation, TauModeAttention still forms attention logits/probabilities
over the whole key-time axis and then does the usual weighted sum att.matmul (v). That means
decode-time work and intermediate memory scale like O(T) per generated token (and O(H - T)
across heads), which becomes prohibitive at 7' = 107 unless of a redesign of the attention compu-
tation to be streaming/chunked/sparse that is one of the principles stated (to use sparse represen-
tation).

To benefit at 10° context, Tauformer needs a variant where it does not cache raw per-token
V' (even compressed) and then multiply by a length-10° attention vector. Instead, cache per-
centroid aggregates (like S ¢,U c¢) and compute attention over K centroids (or over a small
retrieved subset), so both memory and compute scale with K, not 7. This idea brings forward
the possibility of compressing the historical V' using taumode and gl for the latent space as well:
for example, use the same Laplacian idea already applied to get A scalars (via Laplacian-based
mapping helper) but apply it as a projection of V' onto a low-dimensional basis (e.g., first r spectral
components), store only coefficients, and reconstruct an approximate V' when needed. This is
analogous to how arrowspace does dimensionality reduction before computing the Laplacian but
in the latent/value manifold rather than in token embedding space. This is another potential
example of the hypothetical members of a Topological Transfomers’ class of models built for very
large lengths.
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