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Abstract

ArrowSpace is a library that implements a novel spectral indexing approach for vector
similarity search, combining traditional semantic similarity with graph-based spectral prop-
erties. The library introduces taumode (A7, lambda-tau) indexing, which blends Rayleigh
quotient smoothness energy from graph Laplacians with edge-wise dispersion statistics to cre-
ate bounded, comparable spectral scores. This enables similarity search that considers both
semantic content and spectral characteristics of high-dimensional vector datasets.

1 Statement of Need

Traditional vector similarity search relies primarily on geometric measures, like cosine similarity or
Euclidean distance which capture semantic relationships but ignore the spectral structure inherent
in many datasets. For example in domains such as protein analysis, signal processing and molecular
dynamics, the “roughness” or “smoothness” of feature signals across data relationships can provide
valuable discriminative information that complements semantic similarity.

Existing vector databases and similarity search systems lack integrated spectral-aware indexing
capabilities. While spectral methods exist in graph theory and signal processing (for spectral
clustering see [8|), they are typically computationally expensive and they are not considered for
database applications. With the increasing demand for vector searching though (in particular,
at current state, for the components called “retrievers” in RAG applications [5]), the research
on spectral indexing gains traction for database applications. ArrowSpace addresses this gap by
providing:

1. Spectral-aware similarity search that combines semantic and spectral properties
2. Bounded synthetic indexing that produces comparable scores across datasets
3. Memory-efficient representation that avoids storing graph structures at query time

4. High-performance Rust implementation with potentially zero-copy operations and
cache-friendly data layouts



2 Data Model and Algorithm

ArrowSpace provides an API to use taumode (A7) that is a single, bounded, synthetic score
per signal that blends the Rayleigh smoothness energy on a graph with an edgewise dispersion
summary; enabling spectra-aware search and range filtering. Operationally, ArrowSpace stores
dense features (inspired by CSR [7] and smartcore [12]) as rows over item nodes, computes a
Laplacian on items, derives per-row Rayleigh energies, compresses them via a bounded map F/(E+
7), mixes in a dispersion term and uses the resulting A7 both for similarity and to build a A-
proximity item graph used across the API. This way the A7 (taumode) score can rely on a synthesis
of the characteristics proper of diffusion models and geometric/topological representation of graphs.

2.1 Motivation

From an engineering perspective, there is increasing demand for vector database indices that can
spot vector similarities beyond the current available methods (L2 distance, cosine distance, or
more complex algorithms like HNSW that requires multiple graphs, or typical caching mechanism
requiring hashing). New methods to search vector spaces can lead to more accurate and fine-
tunable procedures to adapt the search to the specific needs of the domain the embeddings belong
to.

2.2 Foundation

The starting score is Rayleigh as described in [4]. Chen emphasises that the Rayleigh quotient
provides a variational characterisation of eigenvalues, it offers a way to find eigenvalues through
optimisation rather than solving the characteristic polynomial. This perspective is fundamental in
numerical linear algebra and spectral analysis. The treatment is particularly valuable for under-
standing how spectral properties of matrices emerge naturally from optimisation problems, which
connects to applications in data analysis, graph theory, and machine learning.

Basic points:

e Definition: for a feature row x and item-Laplacian L, the smoothness is E = ZTTI;”“, which is

non-negative, scale-invariant in x, near-zero for constants on connected graphs, and larger
for high-frequency signals; the Rayleigh quotient is the normalised Dirichlet Energy, it is the
discrete Dirichlet energy normalised by signal power.

e Physical Interpretation: Dirichlet energy measure the “potential energy” or “stiffness” of
a configuration while the Rayleigh quotient normalises this by the total “mass” or “signal
power”. the result is a scale-invariant measure of how much energy is required per unit mass
(in our case the items-nodes).

e The numerator equals the sum of weighted edge differences - ;s wi;(2; — z;)?, directly
capturing roughness over the graph, a classical link between Laplacians and Dirichlet energy
used throughout spectral methods.

Some implementation starting points:

e Rayleigh energy z" Lx/x"x measures how “wiggly” a feature signal is over an item graph;
constants yield near-zero on connected graphs, while alternating patterns are larger, making
it a principled spectral smoothness score for search and structure discovery.

e Pure Rayleigh can collapse near zero or be hard to compare across datasets; mapping energy
to a bounded score and blending with a dispersion statistic produces a stable, comparable
score that preserves spectral meaning while improving robustness for ranking and filtering.



2.2.1 Graph and data model

Rayleigh energy score is complemented for spectral indexing by computing the graph Laplacian
|6] of the dataset:

e [tems and features: ArrowSpace stores a matrix with rows = feature signals and columns
= items; the item graph nodes are the columns, and Rayleigh is evaluated per feature row
against that item-Laplacian, aligning spectral scores with dataset geometry.

e [tem Laplacian: a Laplacian matrix is constructed over the graph of the items using a -
proximity policy (e threshold on per-item A, union-symmetrised, k-capped, kernel-weighted);
diagonals store degrees and off-diagonals are —weights, satisfying standard Laplacian invari-
ants used by the Rayleigh quotient.

Example:
1 // 1. Build item graph based on lambda prozimity
let items = vec![
vec![1.0, 2.0], // Item 0: $\lambda_0 = 0.3%
vec![1.1, 2.1]1, // Item 1: $\lambda_1 = 0.358
vec![3.0, 1.0]1, // Item 2: $\lambda_2 = 0.88%
: 1;
7 let aspace = ArrowSpace::from_items(...)
9 // 2. Connect items with $/\lambda_i - \lambda_j/ \le \espilon$
10 // Items 0,1 connected ($/0.3-0.35/ = 0.05 \le \epsilon$)
11 // Items 0,2 not connected $(/0.3-0.8/ = 0.5 \gt \epsilon$)
12 // Items 1,2 not connected $(/0.35-0.8/ = 0.45 \gt \epsilon$)
13
14 // 3. Resulting Laplacian (simplified):
15 // [ w -w 0 7
16 // L= [ -w w 0 ] where w = kernel weight
17 // [ 0 0 0 ]

2.2.2 Role of Laplacian
What the graph Laplacian contributes to Rayleigh energy:

1. Spectral Smoothness: Captures how features vary across item relationships
2. Graph Structure: Encodes similarity topology beyond simple pairwise distances
3. Efficient Computation: Sparse matrix enables fast spectral calculations

4. Theoretical Foundation: Connects to harmonic analysis and diffusion processes

2.3 taumode and bounded energy

The main idea for this design is to build a score that synthesises the energy features and geometric
features of the dataset and apply it to vector searching.

Rayleigh and Laplacian as bounded energy transformation score become a bounded map: raw
energy F is compressed to E' = E}iT € [0,1) using a strictly positive scale 7, stabilising tails and
making scores comparable across rows and datasets while preserving order within moderate ranges.

Additional 7 selection: taumode supports Fixed, Mean, Median, and Percentile; non-finite
inputs are filtered and a small floor ensures positivity; the default Median policy provides robust
scaling across heterogeneously distributed energies.

Rayleigh, Laplacian and 7 selection enable the taumode score, so to use this score as an indexing

score for dataset indexing.




2.3.1 Purpose of 7 in the Bounded Transform

The 7 parameter is crucial for the bounded energy transformation: £’ = E/(E + 7). This maps
raw Rayleigh energies from [0, 00) to [0, 1), making scores:

e Comparable across datasets with different energy scales
e Numerically stable by preventing division issues with very small energies
e Bounded for consistent similarity computations

2.3.2 taumode Options and Their Use Cases

1. taumode: :Fixed(value)
1 taumode::Fixed (0.1) // Use exzactly $\tau = 0.18

When to use:

e You have domain knowledge about the appropriate energy scale

e Consistency across multiple datasets is critical

¢ Reproducibility is paramount (no dependence on data distribution)

Example: If you know protein dynamics typically have Rayleigh energies around 0.05-0.2, you
might fix 7 = 0.1.

2. taumode: :Median (Default}
1 taumode: :Median // Use median of all computed emnergties

When to use:

e Robust scaling - less sensitive to outliers than mean

e Heterogeneous energy distributions with potential skewness

e General-purpose applications where you want automatic adaptation

Why it’s default: The median provides a stable central tendency that works well across
diverse datasets without being thrown off by extreme values.

3. taumode: :Mea~ ;
1 taumode : : Mean // Use arithmetic mean of energies

When to use:

e Normally distributed energy values

e You want the transform to preserve relative distances around the center
e Mathematical simplicity is preferred

Caution: Sensitive to outliers - a few very high-energy features can skew the entire transfor-
mation.



4. taumode: :Percentile(p)
1 taumode::Percentile (0.25) // Use 25th percentile
taumode::Percentile (0.75) // Use 75th percentile
When to use:
e Fine-tuned control over the energy threshold

e Emphasising different regimes:

— Low percentiles (0.1-0.3): Emphasise discrimination among low-energy (smooth) fea-
tures

— High percentiles (0.7-0.9): Emphasise discrimination among high-energy (rough) fea-
tures

2.3.3 Practical Impact on Search

The choice of taumode affects how the bounded energies E" distribute in [0,1):

1 // Low-energy feature with different $\tau$ values
2 let energy = 0.01;
; let tau_small = 0.001; // $E’ = 0.01/0.011\approz0.91¢ (high
sensitivity)
let tau_large = 0.1; // $E’ = 0.01/0.11\approz0.09% (low sensitivity)

Effect on Lambda-Aware Similarity In the lambda-aware similarity score: s = « - cosine +

B (/14 Ag = Ail))

e Smaller 7 — More compressed E’ values — Less discrimination between different energy
levels

e Larger 7 — More spread E’ values — Greater emphasis on spectral differences

2.3.4 Implementation Robustness

The code includes several safeguards. About the 7 scale, it is limited to a floor. This has proved
useful to find similarity in vectors at a range interval scale of 107"

pub const TAU_FLOOR: f64 = 1e-9;

All the tests for finiteness and boundedness of taumode are present in the tests in the repository.

Recommendation Strategy
1. Start with taumode: :Median (default) - works well generally
2. Use taumode: :Fixed when you need reproducibility across runs/datasets
3. Try taumode: :Percentile(0.25) if you want to emphasise smooth features
4. Try taumode: :Percentile(0.75) if rough/high-frequency features are most important
5. Avoid taumode: :Mean unless you're confident about normal distribution

The choice fundamentally determines how much the spectral component (\) influences
similarity relative to semantic cosine similarity, making it a key hyperparameter for tuning search
behavior in your specific domain.



3 Summary and Conclusion

3.1 taumode (A7) Indexing
The core innovation of ArrowSpace is the A7 synthetic index, which combines:

e Rayleigh Energy: For each feature signal x over an item graph with Laplacian L, computes
the smoothness energy E = (27 Lxz)/(27z)

e Bounded Transform: Maps raw energy F to E' = E/(E + 1) using a robust 7 selection
policy (Median, Mean, Percentile, or Fixed)

e Dispersion Term: Captures edge-wise concentration of spectral energy using Gini-like
statistics

e Synthetic Score: Blends E’ and dispersion via A = o+ E' 4+ (1 — «) - G, producing bounded
scores

Here the references to these concepts in the code:

3.1.1 Rayleigh Energy Implementation

The Rayleigh energy computation F = (27 Lz)/(27x) is implemented in src/operators.rs:

1 /// Rayleigh quotient z°T L = / =z°T = for Laplacian L (CSR).
2 pub fn rayleigh_lambda(gl: &GraphLaplacian, x: &[f64]) -> f64 {
3 assert!(!x.is_empty (), "vector cannot be empty");

let den: £f64 = x.iter().map(l&xil| xi * xi).sum();
if den <= 0.0 {
return 0.0;

7 }

8 let mut num = 0.0;
for i in 0..gl.nnodes {
10 let xi = x[i];
11 let start = gl.rows[i];
12 let end = gl.rows[i + 1];
13 let s: f64 = (start..end) .map(|idx| gl.vals[idx] =
x[gl.cols[idx]]) .sum() ;
14 num += xi * s}
15 }
16 num / den

3.1.2 Bounded Transform Implementation

The bounded transform E' = E/(E + 7) is implemented in src/taumode .rs:

// Select tau over the per-item energies and map to bounded scores
let tau = select_tau(&e_item_raw, tau_mode) ;
let mut synthetic_items = Vec::with_capacity(n_items);
for i in O..n_items {
let e_bounded = {
let e = e_item_raw[i].max(0.0);
7 e / (e + tau) // <-- Bounded transform here

"IN}

+s

let g_clamped = g_item_raw[i].clamp(0.0, 1.0);
10 let s = alpha * e_bounded + (1.0 - alpha) * g_clamped;
11 synthetic_items.push(s);



3.1.3 Dispersion Term Implementation

The Gini-like dispersion statistic is computed in src/taumode.rs:

1 // G_f: sum of squared normalised edge shares
2 let mut g_sq_sum = 0.0;
~ if edge_energy_sum > 0.0 {
for i in O..n_items A
let xi = x[i];
let (s, e) = (gl.rows[i]l, gl.rows[i + 1]);
for idx in s..e {
let j = gl.cols[idx];
if § == i {
10 continue;
11 }
12 let w = (-gl.vals[idx]) .max(0.0);
if w > 0.0 {
let 4 = xi - x[j];

let contrib = w *x d * d;
let share = contrib / edge_energy_sum; // Edge energy share
g_sq_sum += share * share; // Gini-like concentration

}
}

I i
o lo 00 -~ C: U w

}

21 }

22 let g f = g_sq_sum.clamp(0.0, 1.0);
dispersions_f.push(g_f);

3.1.4 Synthetic Score Blending

The final synthetic score A = a- E' 4+ (1 — a) - G is computed in src/taumode.rs:

1 let s = alpha * e_bounded + (1.0 - alpha) * g_clamped;
2 synthetic_items.push(s);

3.2 Graph Construction

ArrowSpace builds similarity graphs from vector data using lambda-proximity connections:
e Item Graphs: Connects items whose aggregated A\ values differ by at most €
e K-Capping: Limits neighbors per node while maintaining graph connectivity
e Union Symmetrisation: Ensures undirected Laplacian properties

e Kernel Weighting: Uses monotone kernels w = 1/(1 + (JAM|/o)P) for edge weights

3.3 Memory-Efficient Design

The library consider by-design several optimisations for performance:

e Column-Major Storage: Dense arrays with features as rows, items as columns (for production-
readiness [12]| will be used)

e Potentially Zero-Copy Operations: Slice-based access without unnecessary allocations
as already present in [12]

e Single-Pass Computation: A7 indices computed once, graph can be discarded
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e Cache-Friendly Layout: Contiguous memory access patterns for potential SIMD opti-
mization

4 Implementation

ArrowSpace is implemented in Rust (edition 2024) with the following architecture:

4.1 Core Components

e ArrowSpace: Dense matrix container with per-item A7 scores
e ArrowItem: Individual vector with spectral metadata and similarity operations
e GraphFactory: Constructs various graph types from vector data

e ArrowSpaceBuilder: Fluent API for configuration and construction

4.2 Usage Example

1 use ArrowSpace::builder::ArrowSpaceBuilder;
2 use ArrowSpace::core::Arrowltem;

// Build ArrowSpace from ttem wvectors
let items = vec![

6 vec![1.0, 2.0, 3.0]1, // Item 1

7 vec![2.0, 3.0, 1.0]1, // Item 2

» vec![3.0, 1.0, 2.01, // Item 3
K

1 let (aspace, _graph) = ArrowSpaceBuilder::new()
.with_rows (items)

.with_lambda_graph(le-3, 6, 2.0, None)
.build () ;

// Query with lambda-aware similartity
7 let query = ArrowItem::new(vec![1.5, 2.5, 2.0], 0.0);
let results = aspace.search_lambda_aware (&query, 5, 0.8, 0.2);

e e e o o =
X (< IS S O U R X o

5 Performance Characteristics

5.1 Computational Complexity

e Index Construction: O(N?) for similarity graph (already identified a solution to make this
into O(Nlog N)); O(F - nnz(L)) for A7 computation.

e Query Time: O(N) for linear scan, O(1) for At lookup

e Memory Usage: O(F - N) for dense storage, O(N) for A7 indices

5.2 Benchmarks

The library includes comprehensive benchmarks comparing ArrowSpace with baseline cosine sim-
ilarity:



e Single Query: ~15% overhead for Ar-aware search vs pure cosine
e Batch Queries: Scales linearly with batch size, maintains constant per-query overhead

e Memory Footprint: 4-8 bytes per A7 index vs graph storage

6 Scientific Applications

ArrowSpace has been designed with several scientific domains in mind:

6.1 Protein Structure Analysis

The examples demonstrate protein-like vector databases with molecular dynamics features (in-
spired by [13]):

1 // Trajectory features for spectral analysis
2 fn trajectory_features (domain: &ProteinDomain) -> Vec<f64> {
let mut features = Vec::new();
for frame in &domain.trajectory {
features.push(frame.rmsd) ;
features.push(frame.energy / 1000.0);
7 features.push(frame.temperature / 300.0);

// ... additional biophysical features
}
10 features
11 }
12
let items: Vec<Vec<f64>> = domains

.into_iter ()
.map (extract_features)

13
14

15

16 .collect ();

17

18 let (aspace, _gl) = ArrowSpaceBuilder::new()

19 .with_rows(items) // $N\timesF -> auto-transposed to F\timesl§
20 .build () ;

6.2 Results

ArrowSpace has substantial potential for raw improvements plus all the advantages provided to
downstream more complex operations like matching, comparison and search due to the A spectrum.
The time complexity for a range-based lookup is the same as a sorted set O(log(N) + M). As
demonstrated in the proteins_lookup example, starting from a collection of As with a standard
deviation of 0.06, it is possible to sort out the single nearest neighbour with a range query on an
query interval of A\ 4= 1077,

6.3 Testing and Validation

The library includes extensive test coverage:

e Unit Tests: Core algorithms, edge cases, mathematical properties

Integration Tests: End-to-end workflows, builder patterns

Property Tests: Scale invariance, non-negativity, boundedness

Domain Tests: Molecular dynamics simulations, fractal analysis

Performance Tests: Benchmarks against baseline implementations



6.4 Theoretical properties and tests

e Invariants: tests enforce non-negativity of Rayleigh, near-zero for constant vectors on con-
nected graphs, scale-invariance \(cz) = A(z), and conservative upper bounds via diagonal
degrees, aligning with standard spectral graph theory expectations [4].

e Laplacian structure: CSR symmetry, negative off-diagonals, non-negative diagonals, de-
gree—diagonal equality, and deterministic ordering are validated to ensure stable Rayleigh
evaluation and reproducible A7 synthesis across builds [3].

6.5 Practical guidance

e Defaults: a practical starting point is e ~ 1073, k € [3,10], p = 2.0, 0 = ¢, and taumode: :Median
with a ~ 0.7; this keeps the A-graph connected but sparse and yields bounded A7 values
that mix energy and dispersion robustly for search [14, 9.

e Usage patterns: build ArrowSpace from item rows (auto-transposed internally), let the
builder construct the A-graph and compute synthetic A7, then use lambda-aware similar-
ity for ranking or e-band ordered sets for range-by-score retrieval; in-place algebra over items
supports superposition experiments while preserving spectral semantics through recompute
|4, 2, 3].

7 Conclusion

ArrowSpace provides a novel approach to vector similarity search by integrating spectral graph
properties with traditional semantic similarity measures. The A7 indexing system offers a memory-
efficient way to capture spectral characteristics of vector datasets while maintaining practical
query performance. The library’s design emphasises both mathematical rigor and computational
efficiency, making it suitable for scientific applications requiring spectral-aware similarity search.

The combination of Rust’s performance characteristics with innovative spectral indexing al-
gorithms positions ArrowSpace as a valuable tool for researchers and practitioners working with
high-dimensional vector data where both semantic content and structural properties matter.

Lambda-aware similarity: for query and item Arrowltems, the score combines semantic cosine
and A proximity via s = acos(q,7) + 5(1/(1 + |\, — Ai])), making search sensitive to both content
and spectral smoothness class; setting a = 1, 5 = 0 recovers plain cosine.

Range and top-k: ArrowSpace exposes lambda-aware top-k, radius queries, and pairwise cosine
matrices; examples validate that A\-aware rankings agree with cosine when § = 0 and diverge
meaningfully when blending in \ proximity, with tests covering Jaccard overlap and commutativity
of algebraic operations.

The definition of a core library to be used to develop a database solution based on spectral
indexing is left to another paper that will include further improvements in terms of algorithms and
idioms to make this approach to indexing feasible and efficient in modern cloud installations.
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